滤速是滤池运行的关键参数,不仅决定污染物与微生物的接触时间,而且其大小形成不同强度的水利剪切作用也会影响滤料生物膜的形成、结构及稳定性等,从而导致不同的运行效果.图 3(a)为滤池在 C/N=2时3种滤速条件下(2,4,5m/h)运行结果.2,4,5m/h滤速下平均 NO2--N 累积率分别为 60.3%,59.6%和 68.1%,5m/h 条件下滤池 NO2--N 积累效果*好,可能与高滤速较强的剪切力有关.滤速越高,剪切力越大,有助于加快生物膜的更新,从而能维持较高的部分反硝化特性。,为了进一步分析滤速对部分反硝化的影响,提高 C/N 为 3,再次进行不同滤速的对比试验.结果发现提高 C/N 之后,2,4 和 5m/h 滤速下平均 NO2--N 累积率分别为64.6%,61.9%和65.3%,依旧是在5m/h的运行条件下,获得较高的 NO2--N 积累率,但是由于C/N 提高,高滤速使生物膜的剪切力变弱.C/N 较高时滤速对NO2--N 积累的影响变弱。
C/N 对部分反硝化过程 NO2--N 的积累有重要影响.C/N 过低,部分反硝化微生物得不到足够的能量和电子供体来维持活性并进行硝酸盐还原;C/N 过多,部分反硝化不易维持.也有研究表明,部分反硝化工艺一旦启动,一定范围内 C/N 波动对NTR 的影响不大.如图 4,在部分反硝化滤池中,滤速为 2m/h,C/N 为 3 时平均 NO2--N 累积率为 64.6%,略高于 C/N 为 2 的 61.2%,但是区别并不明显.当滤速为 4m/h,C/N 为 2、2.5 和 3 时平均NO2--N 积累率分别为 61.6% 、 58.6% 和 62.9%; 滤速为5m/hNO2--N 积累率分别为 64.0%、64.5%、59.7%和 62.9%.可见,在本文的试验条件下,滤速不变,C/N在 2~4 范围内波动部分反硝化滤池的 NO2--N 积累特性基本维持不变.,
滤速是滤池运行的关键参数,不仅决定污染物与微生物的接触时间,而且其大小形成不同强度的水利剪切作用也会影响滤料生物膜的形成、结构及稳定性等,从而导致不同的运行效果.图 3(a)为滤池在 C/N=2时3种滤速条件下(2,4,5m/h)运行结果.2,4,5m/h滤速下平均 NO2--N 累积率分别为 60.3%,59.6%和 68.1%,5m/h 条件下滤池 NO2--N 积累效果*好,可能与高滤速较强的剪切力有关.滤速越高,剪切力越大,有助于加快生物膜的更新,从而能维持较高的部分反硝化特性。
为了进一步分析滤速对部分反硝化的影响,提高 C/N 为 3,再次进行不同滤速的对比试验.结果发现提高 C/N 之后,2,4 和 5m/h 滤速下平均 NO2--N 累积率分别为64.6%,61.9%和65.3%,依旧是在5m/h的运行条件下,获得较高的 NO2--N 积累率,但是由于C/N 提高,高滤速使生物膜的剪切力变弱.C/N 较高时滤速对NO2--N 积累的影响变弱。
C/N 对部分反硝化过程 NO2--N 的积累有重要影响.C/N 过低,部分反硝化微生物得不到足够的能量和电子供体来维持活性并进行硝酸盐还原;C/N 过多,部分反硝化不易维持.也有研究表明,部分反硝化工艺一旦启动,一定范围内 C/N 波动对NTR 的影响不大.如图 4,在部分反硝化滤池中,滤速为 2m/h,C/N 为 3 时平均 NO2--N 累积率为 64.6%,略高于 C/N 为 2 的 61.2%,但是区别并不明显.当滤速为 4m/h,C/N 为 2、2.5 和 3 时平均NO2--N 积累率分别为 61.6% 、 58.6% 和 62.9%; 滤速为5m/hNO2--N 积累率分别为 64.0%、64.5%、59.7%和 62.9%.可见,在本文的试验条件下,滤速不变,C/N在 2~4 范围内波动部分反硝化滤池的 NO2--N 积累特性基本维持不变.